

 1 May 3, 2003

Improving Distributed Application Performance Using TCP Instrumentation

Brian L. Tierney, Jason R. Lee, Dan Gunter, Martin Stoufer
Lawrence Berkeley National Laboratory

Tom Dunigan
Oak Ridge National Laboratory

Abstract

Distributed scientific computing applications are requiring an ever-increasing amount of bandwidth. Raw net-
work bandwidth has been increasing rapidly, but getting the applications to effectively use this additional
bandwidth is becoming more and more difficult. In this paper we describe how TCP instrumentation can be
used to guide more efficient use of the network, using a monitoring daemon that we have developed to pas-
sively collect TCP instrumentation data from the kernel for a given application. We describe how this daemon
was used to analyze GridFTP data flows with some experimental TCP protocol enhancements.

1.0 Introduction

One of the primary goals of high performance distributed computing is efficient use of all computing resources,
particularly the network. The only way to ensure efficient use of the network is by closely monitoring the behavior of
the network protocols such as TCP. In a Grid environment, not only must each network connection be as efficient as
possible, but a Grid scheduler or replica selection service must also be able to choose the right set of connections to
use. To ensure that a distributed application is running as efficiently as possible is to perform complete end-to-end
monitoring [14]. One important component often overlooked in end-to-end monitoring is the TCP stack. However,
access to information from the TCP stack is invaluable for monitoring distributed applications.

TCP instrumentation data is useful for many purposes, including:

•

Monitoring applications use of the network: TCP instrumentation data can tell us what throughput an applica-
tion is achieving, averaged over the entire duration of the connection, or tracked in short intervals over time,
giving an indication of the burstiness of the application. TCP instrumentation can also tell if an application is
network, send host, or receive host limited. This passively collected information can be used in place of active
probes and used as input to Grid scheduling or replica selection services.

•

Tuning the TCP parameters for a given connection: TCP instrumentation can be used to determine if the TCP
send or receive buffers are too small, if parallel streams are helping, if

txqueuelen

on Linux should be
increased, and so on.

•

Performing analysis on experimental protocols using real Grid applications: TCP instrumentation can be used
to examine in detail how new protocols such as High-Speed TCP [6], Scalable TCP [16], or FAST TCP [20]
compare to standard TCP using actual running applications on production networks.

To get information from the TCP stack, we are using Web100 [33], an implementation of an IETF Internet Draft
TCP MIB [22] for the Linux operating system. Web100 instruments the TCP stack to expose over 100 TCP variables
for each active connection. Web100 does not provide, however, an easy way to isolate the TCP instrumentation data
for a particular application.

We have developed a monitoring and tuning daemon, called the work around daemon (WAD), that uses
Web100 to collect TCP stack information for one or more user-specified applications. The WAD can also modify
TCP parameters for a given application. This allows it to automatically tune running applications, thus providing a
work around to misconfigured networks or hosts. A previous paper focused on the tuning capabilities of the WAD

 2 May 3, 2003

[5]. This paper s main focus is on the instrumentation capabilities of the WAD and the types of analysis made easier
by using the WAD to collect TCP instrumentation data.

In this paper will describe how the WAD could be used in a Grid environment to provide data needed to make
Grid scheduling decisions, and for application tuning and debugging. We also present some results demonstrating the
use of the WAD for comparing GridFTP [1] performance using standard TCP, High-Speed TCP, and Scalable TCP.

2.0 Use Cases

The following sections describe several use cases for TCP instrumentation data.

2.1 Achievable Throughput Monitoring

One particularly useful statistic that we can derive directly from TCP instrumentation data is achievable
throughput [19] [21].

Available bandwidth

 is the amount of bandwidth currently available on the network, while

achievable throughput

 is the throughput actually possible, given the end-system hardware (CPU speed and load,
network interface card (NIC), I/O Bus speed, disk speed), operating system, TCP stack, TCP parameters, and so on.
Available bandwidth is not particularly useful to Grid middleware, but achievable throughput information is often
needed.

For example, a Grid Replica Manager [2] would like to select a data source based on which source can deliver
data at the highest rate. This decision should not be based on available network bandwidth if the bottleneck is actually
the disk or the network interface card (NIC). The correct way to estimate disk-to-disk throughput is to use
disk-to-disk performance data. One could run periodic tests to measure this; this is the approach taken by the IEPM
project [4]. However such tests can be quite intrusive to the network and both end hosts. Active probes add load to the
network and are often not a good indicator of achievable bandwidth, because they may not accurately simulate the
real application. For example, using an

iperf

 probe [23], which does memory-to-memory tests, does not accurately
simulate GridFTP, which is disk-to-disk.

Using Web100 and the WAD, one can passively monitor the achieved throughput from actual production Grid
Services, rather than using active probes.

Of course, one can also measure achievable throughput by instrumenting the Grid Service, such as a GridFTP
server [32], directly. But using the WAD ensures that all applications are described with an identical set of
measurements, and does not require Grid application developers to worry about this type of instrumentation. It also
makes it easier to publish this achievable throughput information via a standard interface.

The resulting TCP instrumentation data can then be used as input to prediction algorithms and made available to
Grid scheduling services. For example, using Web100, one can collect the values for

DataBytesOut

,

StartTime

, and

EndTime

 for a given TCP session. The achievable throughput for that transfer is then

DataBytesOut / (EndTime - StartTime)

. If desired, the effects of TCP slow start could be factored out
of this calculation by using Web100 information to determine when the connection is out of slow start, and only
measuring the throughput starting at that point. This is similar to the method used by

iperf quick mode

 [31].
Calculation results could be fed into the NWS prediction algorithms [34] and then published in MDS for use in
making scheduling decisions.

In addition to a single sample of the TCP connection, the WAD can also periodically sample the Web100
variables over the lifetime of the connection, such as once every second. These samples can be used to characterize a
particular application s use of the network. For example, it is useful to see if a remote visualization application
requires a fairly steady stream of data, or if data is requested in large bursts followed by a pause. TCP instrumentation
can also be used to look for correlations between these bursts of application data requests and packet loss in the
network.

2.2 TCP Tuning

There are a number of system parameters that effect TCP throughput. Some of these factors are easy to correct
and others are much more subtle. In this section we briefly describe some typical tuning issues for the Linux
operating system, and how TCP instrumentation data and the WAD can be used to identify or correct the problem.

The most common TCP tuning problem is the failure to increase the TCP buffer size. This problem has been very
well understood for many years [18] [30], yet most applications still do not use large enough TCP buffers. For

 3 May 3, 2003

example, in April 2003, Internet 2 monitoring of bulk data transfer traffic (TCP transfers of more than 10 MBytes)
showed that over 95% of the flows were achieving less that 10 Mbits/second [15]. Web100 includes tools to make it
easy to determine if the TCP sending or receiving buffers are too small [3], and the WAD can automatically increase
the size of buffers that are too small, as described in [5].

In some situations it may actually be desirable to

decrease

 the TCP buffer size. Large TCP buffers allow for large
TCP congestion windows, which in turn allow for large bursts of packets to arrive at each router. If a router is
congested, this large burst of packets will lead to packet loss. Experiments have shown that reducing the TCP buffer
size can be an effective way to reduce packet loss and thus increase overall TCP throughput [19].

Another important tuning parameter for Linux is called

txqueuelen

.

In Linux, there is a single queue that all
sockets use to pass packets from the operating system to each network interface card. If this queue fills up, Linux
generates a

SendStall

, and TCP backs off in the same manner as if it detected a lost packet. For Linux hosts with
certain types of 1000 BT NICs,

SendStall

s are actually quite common. Using Web100 it is easy to detect these

SendStall

 events, and the WAD can automatically increase the size of

txqueuelen

 until they stop occurring.
By default,

txqueuelen

 is set to 100 packets, but it can be easily increased using the (UNIX)

ifconfig

command. For more information, see http://www-didc.lbl.gov/TCP-tuning/.

Another issue in tuning TCP for applications such as GridFTP is selecting the optimal number of parallel
streams. A large amount of work has been done to try to determine the optimal and fair number of parallel streams to
use [4] [12] [13] [19]. The WAD makes it easy to associate multiple streams with a particular application (described
below), and Web100 can be used to help determine if parallel streams are helping or hurting. For example we can see
if all streams are getting an equal share of the bandwidth, and see if additional streams lead to additional congestion
events.

To summarize, TCP instrumentation data is necessary to properly tune TCP, and the WAD helps collect this data
for particular applications.

2.3 Grid Scheduling

TCP instrumentation data can be used to measure the throughput that a bulk data transfer application such as
GridFTP is achieving. This data can then be published in a Grid Information Service such as the Globus MDS. The
tuning parameters used to achieve this throughput such as TCP buffer size and number of parallel streams can also be
monitored and published.

Using this achievable throughput information, higher-level Grid services can be built to answer queries such as:
How long will it take to transfer 5 GBytes from Host A to Host B using GridFTP with 4 data streams? The answer
to this question might be based on results for the previous transfer, based on results for a previous transfer that was
same time of day and the same day of the week, based on some prediction algorithm, and so on. Grid Scheduling
Services and Grid Replica Management Services would use such as service to collect data to make scheduling and
data placement decisions.

2.4 Protocol Experiments

In this section we describe some proposed modifications to TCP that allow it to work better on high-speed
networks. TCP instrumentation is necessary to observe how these TCP modifications work with real applications on
real networks or on testbeds like NISTNet [24]. Results for this are presented in Section 4.0 below.

 In order to understand the changes that are proposed to TCP, it would be first necessary to have a basic
understanding of standard TCP and how TCP congestion avoidance works. Most TCP implementations in use
today are based on TCP Reno [17]. TCP Reno congestion avoidance works as follows.

TCP s congestion management is composed of two algorithms: slow-start and congestion avoidance. The
slow-start and congestion avoidance algorithms allow TCP to increase the data transmission rate without
overwhelming the network. TCP s congestion window (CWND) is the size of the sliding window used by the sender.
TCP cannot inject more than CWND segments of unacknowledged data into the network.

TCP Reno s algorithms are referred to as AIMD (Additive Increase Multiplicative Decrease) and are the basis for
its steady-state Congestion Control. TCP Reno increases the congestion window by one packet per window of data
acknowledged and halves the window for every window of data containing a packet drop.

 4 May 3, 2003

It is now well known that standard TCP Reno does not scale to large bandwidth delay product networks. For
example, for a TCP connection with 1500-byte packets and a 100 ms round-trip time, achieving a steady-state
throughput of 10 Gbps would require an average congestion window of 83,333 segments, and a packet drop rate of at
most one congestion event every 5,000,000,000 packets (or equivalently, at most one congestion event every 1 2/3
hours) [6]. This is widely acknowledged as an unrealistic constraint. Solutions to this problem include parallel
streams, High-Speed TCP, Scalable TCP, and FAST TCP. In this paper we present results for High-Speed TCP and
Scalable TCP.

Network applications can be designed or retrofitted to use parallel TCP streams. Parallel streams take advantage
of the fact that TCP tries to share the bandwidth equally among all flows along a path. Performance is improved not
only by getting a bigger share of the bandwidth, but

K

 parallel streams will have

K

 times larger aggregate buffer size.
Slow-start will start

K

 times faster. If a loss occurs in one stream, the multiplicative decrease (MD) will not be TCP’s
standard

1/2

, rather the congestion window will be reduced by only

1/(2K)

. The linear recovery can be

K

 times faster
(

K

 segments per RTT rather than one), if all

K

 streams are already in linear recovery [13].

High-Speed TCP (HS-TCP) modifies TCP s response function in order to obtain high performance in high-speed
environments and in the presence of packet loss. The target environment for HS-TCP is 10Gbps performance in
100ms Round Trip Times (RTT) environments. HS-TCP uses the current congestion window size to calculate the
current AI and MD values. High-bandwidth, high-delay paths will have larger window sizes and thence more
aggressive values for AI and MD. For more information on HS-TCP behavior in a number of scenarios, see [26].

An alternative solution is Tom Kelly s Scalable TCP. Using Scalable TCP, the TCP response function is
proportional to round trip time only, rather than both the window size and round trip time. Instead of adjusting both
AI and MD as in HS-TCP, Scalable TCP takes the approach that MD should always be 0.125 (i.e.: reduce window by
1/8 on congestion events), and instead of adding 1/CWND to CWND for each ACK received, (e.g., 1%). As a result,
TCP can recover in a fixed number of RTT’s. For example, on a 10 Gbps, 200ms RTT link, Scalable TCP will
always recover in 2.7 seconds. By comparison, standard TCP takes over 4 hours to recover! A larger MTU or virtual
MSS [5] can also improve TCP performance on high bandwidth-delay networks.

3.0 TCP Instrumentation and Analysis Components

We now describe in more detail the various software components used to perform TCP analysis presented in
Section 4.0, below.

3.1 Web100

The Web100 project [33] is an NSF funded collaboration between the Pittsburgh Supercomputing Center (PSC),
the National Center for Atmospheric Research (NCAR) and The National Center for Supercomputing Applications
(NCSA). Web100 exposes the statistics inside the TCP stack itself through an enhanced standard Management
Information Base (MIB) for TCP [22]. This MIB uses TCP s ideal vantage point to provide statistics for diagnosing
performance problems in both the network and the application. If a network-based application is performing poorly,
TCP information from Web100 allows us to determine if the bottleneck is in the sender, the receiver, or the network
itself. If the bottleneck is in the network, TCP can provide specific information about its nature. Web100 also
provides an interface to set certain TCP settings on active sockets, such as the TCP buffer size.

The current Web100 implementation is based on extensions and modifications to the Linux 2.4 kernel. Web100
variables are contained in a data structure attached to the kernel s socket data structure. An application reads and sets
the Web100 variables using the Linux

/proc

interface using an API provided in the Web100 distribution. TCP
connection start and end events are provided to an application (e.g., the tuning daemon) through the

netlink

service.

3.2 Work-Around Daemon (WAD)

We have developed a monitoring and tuning daemon for the Web100 kernel called the Work-Around Daemon, or
WAD. The name comes from the WAD s original goal, which was to use Web100 tuning mechanisms to work
around problems with TCP flows in a particular network or application. For more information on the WAD tuning
options, see [5]. In this paper we are using the WAD in a read-only mode for monitoring TCP, not for TCP tuning.
The WAD daemon is notified asynchronously of socket open/close events, and then data is collected by polling at
some user specified interval.

 5 May 3, 2003

The WAD first detects a TCP connection by listening on the Web100

netlink socket

-- a communication
mechanism used for kernel notifications to user space. The daemon then consults a configuration file that specifies
which flows (source, source port, destination, destination port) are of interest. When the WAD is used for tuning a
connection, the configuration entry for a tunable flow also includes a set of tuning parameters such as maximum
ssthresh, AIMD parameters or algorithms (e.g., HS-TCP, scalable TCP), reordering threshold, and so on.

 The WAD can be used to monitor any Web100 variable for any TCP flow. For example, the WAD can measure
the congestion window, packet retransmissions, timeouts, and smoothed RTT times of any socket directly from
Web100 variables. The WAD can also be configured to generate

derived events

from combinations of Web100
variables. For example, one could generate average and instantaneous bandwidth by placing the following text in the
appropriate configuration file:

AveBW = (DataBytesOut*8)/(CurrTime - StartTime)

LastIntervalBW = (Delta_DataBytesOut*8)/ (Delta_SndLimTimeRwin +
Delta_SndLimTimeCwnd + Delta_SndLimTimeSender)

The WAD can write any subset of the derived and raw variable values as NetLogger events [28] and send these
events to the NetLogger visualization tool,

NLV

, for visual analysis of TCP streams.

The WAD also has the ability to use plug-in modules, that can execute arbitrary additional commands. One use
of plug-in modules is to generate

derived

 connections, which can in turn be monitored. For example, for GridFTP the
WAD only needs to monitor the well-known TCP control port (2811), and a plug-in module can be used to derive the
data connections for a given transfer. The plug-in does this by examining the control connection s source host, source
port, destination host, and destination port, and then using the fact that the GridFTP server will by default connect
back to the same client host/port pair for data connections. The plug-in then sets up the ports to monitor for the data
connections, and passes them back to the WAD for monitoring. Using variations on this technique, we can monitor
any application that dynamically allocates ports.

It is worth noting that Globus GridFTP service has some features that both help and hinder the technique outlined
above. To get around firewall issues, GridFTP has the facility to allow the sysadmin to specify what ports to use for
the data channels by setting the GLOBUS_TCP_PORT_RANGE variable. The WAD can by configured to monitor
these ports directly, but there is no guarantee that these ports are not used by some other application. GridFTP also
supports third party transfers, where the endpoints of the data channels are not the same as the endpoints of the
control socket. In order for the WAD to monitor third party transfers the GLOBUS_TCP_PORT_RANGE must be
used, and the WAD be configured to monitor those ports.

Other applications of plug-ins allow for the monitoring of system data on a specific host. For example if we are
doing GridFTP transfers and we want to correlate the disk and network interface activity with the network flow of the
application, we can simply plug-in a module to log disk activity along with the WAD s standard TCP information
for the application flow.

3.3 NetLogger

We are using several components of the NetLogger Toolkit to generate, collect, and analyze this TCP
instrumentation data, and to correlate it with other sources of monitoring data. Since 1994 researchers at Lawrence
Berkeley National Lab have been developing a toolkit for end-to-end instrumentation of distributed applications
called NetLogger [28]. Using NetLogger, distributed application components are modified to produce timestamped
traces of interesting events at all critical points of the distributed system. The NetLogger Toolkit itself consists of
four components: an API and library of functions to simplify the generation of application-level event logs, a service
to collect and merge monitoring from multiple remote sources, a monitoring event archive system, and a tool for
visualization and analysis of the log files.

NetLogger events can be formatted as an easy to read and parse ASCII format, or an efficient, self-describing
binary format [9]. NetLogger also includes reliability support and a remote activation mechanism. The NetLogger
Reliability API provides tolerance for temporary network failures that are common in Grid environments. Using the
NetLogger Activation Service, the level of monitoring and log destination in a running application can be controlled
across the network. For instance, the WAD can be activated to send its NetLogger results to a particular destination
during a particular application run.

 6 May 3, 2003

The NetLogger Toolkit also includes a data analysis component. The NetLogger Visualization tool,

NLV

,
provides an interactive graphical representation of system-level and application-level events. NetLogger s ability to
correlate detailed application instrumentation data with host and network monitoring data has proven to be a very
useful tuning and debugging technique for distributed application developers. As an example, see Figure 1.

4.0 Results

In this section we show how TCP instrumentation data generated by Web100, collected by the WAD, and
analyzed using NetLogger and gnuplot can be used to tune TCP, to better understand application use of the network,
and to analyze experimental TCP enhancements.

4.1 TCP Analysis Results

To demonstrate the TCP analysis ability, we show the results of using Web100 and the WAD to analyze the
performance of

iperf

, a simple tool to test memory-to-memory throughput between two hosts, to determine why

iperf

was not obtaining the available bandwidth on a particular path.

Figure 1 shows a graph of several Web100 variables along with CPU utilization and instrumented

iperf

 events.
Web100 counters are collected every 0.3 seconds using the WAD. CPU utilization data is collected every second
(cpu.utilization.user and cpu.utilization.sys), and

iperf

has been instrumented with NetLogger to generate monitoring
events before and after all I/O operations (StartRead/EndRead in the iperf server, and StartWrite/EndWrite in the
iperf client). The numbers on the right side of the plot are the range of values for that monitoring event and the
numbers without units are a count of the number of times an event occured.

There is an immense amount of information in this plot, which we will attempt to explain. From bottom to top:

•

CPU user and system load information: the two colors represent the sender and receiver host. Note that system
CPU increases when

CurrCWND

 is large

•

StartWrite

 and

EndWrite

 are from the

iperf

 client, and represent the time to write a 512 KByte block
from user space to kernel space

•

StartRead

 and

EndRead

 are from the

iperf

 server, and represent the time to read a 512 KByte block from
kernel space to user space. Note that the client writes are much more bursty than the server reads.

•

IntBW

: a WAD computed value of the bandwidth achieved since the last measurement (0.3 seconds)

•

SndLimTimeCwnd

,

SndLimTimeRwin

, and

SndLimTimeSender

: These are Web100

sender conges-
tion triage

 variables that help determine whether the sender, receiver, or the network is the bottleneck

Time (seconds)
Figure 1: TCP analysis correlated with CPU and application monitoring

 7 May 3, 2003

•

CongestionSignals

: Web100 sum of all types of congestion events, including Fast Retransmit, ECN,
and timeouts.

•

OtherReductionsCM

: Other than during congestion, there are a few other situations where the Linux 2.4
TCP implementation reduces the congestion window. One of these is that Linux includes a routine called

tcp_moderate_cwnd

, which reduces CWND whenever it thinks there are more packets in flight than there
should be based on CWND. This algorithm appears to be specific to Linux, and based on no known IETF doc-
ument. Note that since there are no other congestion signals recorded for this run, OtherReductionsCM are
clearly the cause of CWND being reduced.

•

CurrCwnd

: current TCP congestion window

•

MaxRwinRcvd

: This is the maximum TCP window size that the receiver is telling the sender it can use.

•

CurRTO

: current value of the TCP RTO (Retransmission Timer) measurement, used to determine when a TCP
time-out should occur.

•

SmoothedRTT

: TCP s internal notion of the round-trip time.

•

bw.TCP: average bandwidth since the start of the test, as reported by iperf.

Note that the WAD records both value (current value) and delta (difference from the previous value) for each
event. With NLV, you can specify which you wish to graph. For some events (e.g.: CongestionSignals) it is
better to graph the deltas, but with other events (e.g.: CurrCWND) you want to see a trace of the current values.

The careful observer may have noticed that CWND appears to recover from congestion faster than standard TCP
would allow. This is because for this test we were using an implementation of the High-Speed TCP algorithm, which
more aggressively recovers from congestion events when the congestion window is large.

In Figure 1 we see that the maximum bandwidth peaked around 660 Mbps (IntBW), but that the average was
only around 200 Mbps. This was due to the fact that CWND was continuously reduced by the Linux 2.4
tcp_moderate_cwnd routine. We are trying to determine why this routine exists, but currently believe that it should be
removed.

More details on how to produce plots such as the one shown in Figure 1 are given in [29].

4.2 TCP Tuning Results

Figure 2: web100 variables for TCP tuning

 8 May 3, 2003

In this example we show how TCP instrumentation can be used to help tune TCP on a given host. Figure 2 shows
the TCP analysis for three parallel streams. Note that curCwnd is constantly being pulled down, and often when there
is no congestion event. This is caused by txqueuelen being too small, causing several SendStall events, and
leading to a reduced congestion window. Figure 2 also shows that for this transfer the use of three parallel streams
did not really help, as two streams got almost all of the bandwidth.

4.3 GridFTP Results
We now present results investigating how High-Speed TCP and Scalable TCP behave with a real Grid

application, GridFTP. Other studies show the results of HS-TCP in a simulated environment [26], but it useful to see
what happens in a real environment with real applications.

The test environment is the following. A 2 Gigabyte file is copied from Lawrence Berkeley National Lab to Oak
Ridge National Lab. Both end hosts are 1.2 GHz Pentium III hosts running Linux 2.4.20 with the Web100 patch. The
network round trip time is 67 ms and the bottleneck link is 622 Mbits/sec. TCP buffers were set to 4 MBytes,
txqueuelen was set to 2000 and CWND caching was turned off (using the command: sysctl -w
net.ipv4.route.flush=1). All tests were run several times and typical results are shown below.

The following WAD configuration file was used to collect GridFTP data:
[GridFTP]
src_addr: 0.0.0.0 # capture data for all source addresses
src_port: 2812 # capture data for source port 2812 only
dst_addr: 0.0.0.0 # capture data for all destination addresses
dst_port: 0 # capture data for all destination addresses
plugin: gridftp # use the gridftp plugin module, which specifies to

also collect data for data ports created
after a connection on port 2812

#
[NetLogger] # generate the following NetLogger events
wad.AveBWI: (Delta_DataBytesOut*8)/(Delta_SndLimTimeRwin + \

Delta_SndLimTimeCwnd + Delta_SndLimTimeSender)
web100.CongestionSignals: CongestionSignals
web100.SendStall: SendStall
web100.PktsRetrans: PktsRetrans
web100.CurCwnd: CurCwnd
#
[PyWAD]
outputdest: file:///tmp/gridftp.log # send results to this file
polltime: 1.0 # collect results every second

Figure 3 shows results comparing standard TCP with HS-TCP, plotting the size of the congestion window,
sampled once per second, of the lifetime of the transfer. From this figure one can clearly see that the TCP congestion
window recovers from loss much faster using HS-TCP compared to standard TCP. This faster recovery results in
higher throughput for the network application.

Figure 4 shows a comparison between HS-TCP and Scalable TCP. The plot for Scalable TCP, single stream
(upper left) does not show the expected results for Scalable TCP, as CWND goes back to 1448 (1 packet) instead of
being reduced by just 1/8th. Looking at other Web100 data collected by the WAD (RetranThresh) for this run
showed a large number of out-of-order packets. In the case where the number of out of order packets is greater than 3,
Linux does a TCP time-out, and resets CWND to the initial value. For the parallel stream tests, it appears that all of
the streams experience loss during slow-start. Further analysis of this is underway, and will be included in the final
version of this paper. However, detailed analysis of HS-TCP and Scalable TCP is beyond the scope of this paper. Our
goal here is to demonstrate that the combination of Web100, the WAD and NetLogger make this type of analysis
possible.

This experiment shows that using the WAD it is easy to collect TCP information, and derived statistics of that
information such as AveBWI, so that real application performance can be visualized and analyzed.

 9 May 3, 2003

5.0 Related Work
Web100 provides a number of tools to analyze TCP connections. For example, the Web100 gutil program [10]

provides a nice mechanism for exploring Web100 variables for a selected TCP stream. Unlike the WAD, the Web100
tools are all aimed at real-time analysis of active connections and require the user to select which socket to monitor.
The WAD can monitor specified applications without any user interaction.

tcptrace [27] is very good for visually exploring tcpdump files. In isolation, though, it does not replace the need
for Web100 instrumentation data. For example, events such as SendStalls are not collected by tcpdump. Also,
tcptrace does not provide any ability to correlate this information with other types of monitoring, such as CPU
monitoring, a task that is straightforward with the NetLogger visualization tool (NLV).

MAGNeT [7] also provides the mechanisms required to instrument TCP, as well as other aspects of the kernel.
MAGNeT has been used in conjunction with profiled applications to determine how the effects of kernel processes,
such as scheduling, on network intensive applications. MAGNeT can monitor the data path from the kernel through
the TCP stack all the way to the NIC. This amount of detail complements the profiling of the TCP stack to see where
spurious values (like large RTO’s) may be caused by a kernel scheduling conflict rather then congestion on the
network.

There are several system such as Supermon [25] and Ganglia [8] that can read and publish various /proc
variables. However only Web100 puts detailed TCP instrumentation information into /proc.

6.0 Conclusions and Future Work
Scaling TCP to very large bandwidth-delay product networks has proven to be very challenging. The only way to

ensure efficient use of the network is by closely monitoring the behavior of the network protocols such as TCP.

Figure 3: GridFTP Results comparing standard TCP and HS-TCP

 10 May 3, 2003

Although TCP instrumentation is important, it is often omitted from an end-to-end monitoring system. In this paper,
we have attempted to show that this omission is a mistake; access to information from the TCP stack can be very
valuable for understanding and tuning distributed applications. We have also shown how TCP instrumentation data
can be used for performance analysis and tuning, as well as for testing new, experimental protocols.

We plan to add an implementation of FAST TCP to the Web100 kernel, so that we can better compare HS-TCP,
Scalable TCP, and FAST TCP.

7.0 Acknowledgments
We wish to thank all the members of the Net100 project (http://www.net100.org/) for their help with this work.

This work was supported by the Director, Office of Science. Office of Advanced Scientific Computing Research.
Mathematical, Information, and Computational Sciences Division under U.S. Department of Energy Contract No.
DE-AC03-76SF00098. See the disclaimer at http://www-library.lbl.gov/disclaimer. This is report no. LBNL-52590.

8.0 References
[1] Allcock, B., J. Bester, J. Bresnahan, et.al., Data Management and Transfer in High Performance Computational Grid Envi-

ronments. Parallel Computing Journal, Vol. 28 (5), May 2002, pp. 749-771.

[2] Chervenak, A., I. Foster, C. Kesselman, et. al. The data grid: Towards an architecture for the distributed management and
analysis of large scientific datasets. In Network Storage Symposium (NetStore 99), 1999.

[3] Carlson, R., Developing a Web100 Based Network Diagnostic Tool, Proceedings of the Passive and Active Monitoring
Workshop, San Diego, April 2003. http://www.pam2003.org/listPapers.html

[4] Cottrell, L., Connie Logg, I-Heng Mei, Experiences and Results from a New High Performance Network and Application
Monitoring Toolkit, Proceedings of the Passive and Active Monitoring Workshop, San Diego, April 2003.

Figure 4: GridFTP Results comparing HS-TCP and Scalable TCP

 11 May 3, 2003

[5] Dunigan, T., M. Mathis and B. Tierney, A TCP Tuning Daemon, Proceeding of IEEE Supercomputing 2002 Conference,
Nov. 2002, LBNL-51022.

[6] Floyd, Sally, HighSpeed TCP for Large Congestion Windows, IETF Internet Draft, http://www.ietf.org/inter-
net-drafts/draft-floyd-tcp-highspeed-02.txt

[7] Gardner, M., W. Feng, and J. Hay, Monitoring Protocol Traffic with a MAGNeT, Passive and Active Measurement Work-
shop, (PAM2002), Fort Collins, Colorado, Mar. 2002.

[8] Ganglia: http://ganglia.sourceforge.net/

[9] Gunter, D., et. al. Dynamic Monitoring of High-Performance Distributed Applications. in 11th IEEE Symposium on High
Performance Distributed Computing. 2002.

[10] gutil, http://www.web100.org/docs/man/gutil.html

[11] Handley, M., J. Padhye, S. Floyd, TCP Congestion Window Validation, June 2000, http://www.ietf.org/rfc/rfc2861.txt

[12] Hacker, T., B. Athey, and B. Noble. The End-to-End Performance Effects of Parallel TCP Sockets on a Lossy Wide-Area
Network. Proc. 16th IEEE-CS/ACM International Parallel and Distributed Processing Symposium (IPDPS), 2002. URL:
http://www.cnaf.infn.it/ ferrari/papers/tcp/IPDPS.pdf.

[13] Hacker T. and B. Noble, The Effects of Systemic Packet Loss on Aggregate TCP Flows, Proceeding of IEEE Supercomput-
ing 2002.

[14] Hollingsworth J, and B. Tierney, Instrumentation and Monitoring, in The Grid, Volume 2. Morgan Kaufman, 2003.

[15] Internet2 NetFlow: Weekly Reports, 2002. URL: http://netflow.internet2.edu/weekly/.

[16] Kelly, T., Scalable TCP: Improving Performance in HighSpeed Wide Area Networks, First International Workshop on Pro-
tocols for Fast Long-Distance Networks, 2003

[17] Jacobson, V., Congestion avoidance and control, in Proceedings of the ACM SIGCOMM 88 Conference on Communica-
tions Architectures and Protocols, vol. 18, Stanford, CA, August 1988, pp. 314—329.

[18] Jacobson, V., R. Braden, and D. Borman. RFC 1323: TCP extensions for high performance, May 1992.

[19] Jin, G. and B. Tierney, Netest: A Tool to Measure Maximum Burst Size, Available Bandwidth and Achievable Throughput,
Proceedings of the 2003 International Conference on Information Technology Aug. 10-13, 2003.

[20] Jin, C., D. Wei, S. H. Low, et. al; FAST TCP: From Theory to Experiments, submitted to IEEE Communications Magazine,
April 1, 2003

[21] Lowekamp, B., B. Tierney, L. Cottrell, R. Hughes-Jones, T. Kielmann, M. Swany, A Hierarchy of Network Performance
Characteristics for Grid Applications and Services, Global Grid Forum Draft, Network Measurements Working Group,
http://www-didc.lbl.gov/NMWG/docs/measurements.pdf

[22] Mathis, M., R. Reddy, J. Heffner, and J. Saperia. TCP Extended Statistics MIB. IETF draft, work in progress, November
2002. URL: http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-tcp-mib-extension-03.txt.

[23] NLANR. iperf, URL: http://dast.nlanr.net/Projects/Iperf/.

[24] NISTNet, 2001, http://snad.ncsl.nist.gov/itg/nistnet/

[25] Sottile M. and R. Minnich. Supermon: A High-Speed Cluster Monitoring System. In Proc. of IEEE Intl. Conference on
Cluster Computing, 2002.

[26] Souza, E. and D. Agarwal, A HighSpeed TCP Study: Characteristics and Deployment Issues, submitted to IEEE Supercom-
puting 2003.

[27] tcptrace: http://www.tcptrace.org/

[28] Tierney, B., et al. The NetLogger Methodology for High Performance Distributed Systems Performance Analysis. in Proc.
7th IEEE Symp. on High Performance Distributed Computing. 1998.

[29] Tierney, B., Using NetLogger and Web100 for TCP Analysis, Invited Paper, First International Workshop on Protocols for
Fast Long-Distance Networks, 2003, LBNL-51776.

[30] Tierney, B., TCP tuning Guide for Distributed Applications on Wide Area Networks, Usenix ;login Journal, Feb., 2001,
p33. LBNL-45261. http://www-didc.lbl.gov/TCP-tuning/

[31] Tirumala, A., L. Cottrell, T. Dunigan, Measuring end-to-end bandwidth with Iperf using Web100, Proceedings of the Pas-
sive and Active Monitoring Workshop, San Diego, April 2003. http://www.pam2003.org/

[32] Vazhkudai, S., J. M. Schopf, I. Foster. Predicting the Performance of Wide Area Data Transfers. Proceedings of the 16th
International Parallel and Distributed Processing Symposium (IPDPS 2002), April 2002.

[33] web100 project: http://www.web100.org/

[34] Wolski, R., Dynamically Forecasting Network Performance Using the Network Weather Service, in Journal of Cluster
Computing, Volume 1, pp. 119-132, January, 1998.

